Al-Assisted Detection of Lateral Ventricular Abnormalities in
2D Fetal Brain Ultrasound Project

Introduction

Accurate prenatal evaluation of the fetal brain is of critical importance
for the detection, characterization, and prognostic assessment of
congenital intracranial anomalies, directly influencing both prenatal
counseling and perinatal management (1). Two-dimensional (2D)
ultrasonography (USG) remains the cornerstone imaging modality for
fetal brain assessment worldwide due to its wide availability, real-time
imaging capability, and absence of ionizing radiation (1,2). However,
the diagnostic performance of fetal brain USG is inherently limited by
several factors, including operator experience, fetal position, acoustic
window quality, and variability in image acquisition techniques (2).
Consequently, subtle or atypical abnormalities may be overlooked, and
substantial inter-observer variability may arise both in the acquisition
of appropriate imaging planes and in image interpretation (1,2).

Over the past decade, rapid advances in artificial intelligence (Al),
particularly in deep learning, have fundamentally transformed medical
image analysis and have been increasingly integrated into obstetric
ultrasonography (3-5). Al-based systems have demonstrated expert-
level or near—expert-level performance in a variety of fetal ultrasound
applications, including automatic recognition of standard imaging
planes, organ segmentation, biometric measurements, and anomaly
classification when evaluated in retrospective datasets (3,4). These
technologies offer the potential to reduce operator dependence,
improve reproducibility of measurements and interpretations, shorten
examination time, and provide real-time decision support during
routine screening or targeted assessments (4—6). In the context of fetal
imaging, Al models developed for fetal brain ultrasound have reported
promising results, particularly for the detection of conditions such as
ventriculomegaly and related ventricular abnormalities (7,8).
Nevertheless, a substantial proportion of existing studies are limited by



their focus on a single imaging plane or specific lesion types, relatively
small sample sizes, or a lack of systematic evaluation using
heterogeneous datasets that reflect real-world clinical practice (1,9).

Given the ongoing need for reliable, standardized, and scalable tools
to support the interpretation of fetal brain ultrasonography in routine
clinical settings, there is a strong rationale for the development and
validation of Al-assisted diagnostic models utilizing large archives of 2D
fetal brain ultrasound images (1,4,9). Accordingly, the objective of this
study was to develop an Al-assisted diagnostic model for the analysis
of archived 2D fetal brain ultrasound images, with the aim of improving
the detection of lateral ventricular abnormalities and contributing to
greater standardization of image interpretation across operators and
varying examination conditions. This study was deliberately designed
as an anatomy-focused, proof-of-concept initial model, with the first
phase concentrating on the lateral ventricular plane, which is highly
reproducible, clinically relevant, and routinely acquired in fetal
neurosonography. This approach is intended to provide a scalable
foundation for subsequent development of a more comprehensive,
multiplanar Al-assisted neurosonography framework incorporating the
posterior fossa, midline structures, and additional intracranial planes.

Study Objectives and Hypothesis (Lateral ventricle—focused)

The primary objective of this study was to evaluate the diagnostic
performance of an artificial intelligence—assisted model trained on
expert-labeled archived 2D fetal lateral ventricular (Vp) ultrasound
images for the detection of lateral ventricular abnormalities.
Specifically, we aimed to assess the model’s diagnostic accuracy,
sensitivity, specificity, and error patterns in distinguishing normal from
abnormal findings using real-world clinical datasets, as an anatomy-
focused proof-of-concept initial model for subsequent expansion to a
comprehensive multiplanar fetal neurosonography framework (1-4).



The secondary objective was to explore whether Al-assisted analysis
of lateral ventricular imaging could reduce inter-observer variability
and contribute to improved standardization of fetal brain ultrasound
interpretation, addressing a key limitation of operator-dependent
neurosonographic assessment and providing a scalable foundation for
broader clinical implementation (1,2,4).

Additionally, we sought to identify specific lateral ventricular
abnormality patterns or image characteristics associated with
misclassification—insights that may guide refinement of Al-based
diagnostic tools and support their translation into clinical workflows
(3-5,7).

We hypothesized that an Al-assisted diagnostic model trained on a
large set of expert-labeled archived fetal brain ultrasound images
would (1) achieve high diagnostic accuracy comparable to expert
interpretation for lateral ventricular abnormality detection,
(2) improve the detection of lateral ventricular abnormalities relative
to traditional operator-dependent assessment, and
(3) contribute to greater standardization and reproducibility in fetal
neurosonography by reducing interpretive variability (1-5,7).

Methods

This observational diagnostic study was conducted between October
1, 2025, and November 30, 2025, using previously acquired and
archived 2D fetal brain ultrasound images obtained during routine
prenatal examinations. All ultrasound scans were performed using a
Voluson E8 system (2021, GE Healthcare, Zipf, Austria). No patients
were re-examined, and no new ultrasound acquisitions or
measurements were performed specifically for the purposes of this
study.

The study evaluated a deep learning—based artificial intelligence
model designed to classify fetal lateral ventricular findings as normal



or abnormal on 2D ultrasound images. Approximately 3,000 fetal brain
ultrasound images containing intracranial structures were initially
screened and deemed suitable for expert review. From this archive,
images demonstrating the lateral ventricular plane were selected for
subsequent analysis.

Abnormality was defined as a lateral ventricular width greater than 10
mm measured in the standard axial transventricular plane, in
accordance with guidelines established by the International Society of
Ultrasound in Obstetrics and Gynecology (ISUOG) (10).

Ethical approval for the study was obtained from the MEF University
Ethics Committee (Approval No. E-47749665-050.04-4465). The study
was registered in a clinical trials registry, and a ClinicalTrials.gov
identification number (NCT07261618) was obtained.

The study followed an observational diagnostic accuracy design using
fully anonymized ultrasound images captured between 18 and 24
weeks of gestation as part of routine prenatal care. All images were
retrieved from the institutional digital archive and contained no
patient identifiers. No new imaging procedures or patient interactions
occurred during the study. All data handling complied with ethical
standards governing the secondary use of clinical imaging data.

Eligibility Criteria

Eligibility criteria were defined a priori according to the clinical trial
protocol and methodological framework. Included images met all of
the following criteria:

. Archived 2D fetal brain ultrasound images obtained between 18
and 24 weeks of gestation

. Acquired from individuals aged 18 to 45 years at the time of
imaging

. Adequate visualization of the lateral ventricles, primarily in the
transventricular and transthalamic planes



. Diagnostic image quality sufficient for structural assessment
« Fully anonymized, with all identifying information removed
. Suitable for ground-truth classification by expert reviewers

A normal case was defined as one demonstrating stored freeze-frame
ultrasound images in standard axial planes—transventricular,
transthalamic, and transcerebellar—acquired in accordance with
ISUOG guidelines, with lateral ventricular width <10 mm and normal
ventricular morphology (10).

Images were excluded if they:
. exhibited insufficient diagnostic quality or motion artifacts,
. were incomplete, duplicated, or corrupted,

. lacked standard axial-plane images or contained color Doppler or
measurement caliper overlays,

. had uncertain gestational age,

. contained any form of identifiable metadata, or

« were misfiled records unrelated to the fetal brain.
Expert Review and Ground Truth Definition

Each eligible image was independently reviewed by a clinician (Bilge
Cetinkaya Demir, MD, Assoc. Prof.) with more than 15 years of
experience in fetal neurosonography. Images were classified as
normal or abnormal, and abnormal cases were further subcategorized
based on structural characteristics of the lateral ventricles. Any
discrepancies were resolved through consensus review.

These expert-labeled classifications served as the ground truth for all
subsequent model training, validation, and evaluation procedures.



Al Model Development

A deep learning—based classification framework was developed using
a standardized and reproducible preprocessing pipeline. All 2D fetal
brain ultrasound images focusing on the lateral ventricular plane
were resized to a fixed spatial resolution and intensity-normalized prior
to model training to ensure consistency across heterogeneous
acquisition conditions.

A major methodological challenge in this study was the pronounced
class imbalance inherent to lateral ventricular abnormality detection,
with substantially fewer abnormal cases compared to normal images.
To mitigate this limitation, synthetic abnormal lateral ventricular
images (n = 116) were generated following evidence-based strategies
for handling imbalanced medical imaging datasets, as described in
recent comprehensive reviews of imbalance mitigation techniques in
healthcare Al (11).

Importantly, all synthetic images represented abnormal lateral
ventricular cases only and were incorporated exclusively into the
training dataset. No synthetic images were used during validation or
real-only testing to preserve the clinical integrity and external validity
of model evaluation.

The final dataset used for model development consisted of 529 real
ultrasound images (413 normal and 116 abnormal) and 116
synthetically generated abnormal images, yielding a total of 645
images. The dataset was split using an 85% / 15% train—test ratio, with
strict separation between training and evaluation sets. All validation
and testing subsets consisted exclusively of real clinical images,
ensuring that reported performance metrics reflect real-world
diagnostic behavior.

Prior to final model selection, multiple model families were explored
and comparatively evaluated using cross-validation, including large-
scale vision transformer—based architectures (e.g., google/



vit_huge_patchl4 224 in21k) and multimodal generative vision—
language models (e.g., unsloth/LLaMA-3.2-11B-Vision-Instruct) fine-
tuned for binary image classification. However, these approaches did
not achieve stable or clinically acceptable performance for lateral
ventricular assessment. A key limitation observed with large-scale
transformer and generative models was their reliance on aggressive
image upscaling, which introduced pixel-level artifacts and degraded
fine anatomical detail critical for accurate ventricular evaluation in
ultrasound imaging.

Similarly, conventional convolutional neural network (CNN)
architectures without imbalance-aware optimization strategies were
insufficient to achieve robust performance, particularly for the
minority abnormal class. To address these limitations, a custom hybrid
CNN-based architecture optimized for grayscale medical imaging was
developed and adopted (12). This approach combined convolutional
feature extraction with modern regularization strategies to improve
discrimination under limited and imbalanced data conditions.

Data augmentation techniques applied during training included small
rotational perturbations, horizontal flipping, random resized
cropping, controlled brightness and contrast adjustments, and
localized random erasing. All augmentations were carefully
constrained to preserve anatomical plausibility of the lateral
ventricular structures. All synthetically generated abnormal images
were independently reviewed and validated by fetal sonography
specialists, including Nefise Nazh Yenigiil, MD, Assoc. Prof and Bilge
Cetinkaya Demir, MD, Assoc. Prof., prior to inclusion in the training
process.

Model optimization employed class-weighted loss functions, adaptive
learning-rate scheduling, early stopping, and mixed-precision
training to improve generalizability and training stability. In addition, a
dynamic probability decision-threshold optimization strategy was
implemented at inference time to reduce classification bias and



improve fairness across classes, particularly for the underrepresented
abnormal category (12). This dynamic thresholding approach aligns
with established principles of responsible and bias-aware Al design in
medical diagnostics (13).

All data preprocessing, data visualization, exploratory analysis,
synthetic anomaly generation pipelines, cross-validation experiments,
model architecture design, training procedures, and evaluation
workflows—particularly the development and application of the
dynamic probability-threshold optimization strategy for responsible
and bias-aware clinical inference—were designed and implemented
by Al Engineer Erdeniz Unvan.

Full technical specifications, hyperparameters, and implementation
details are provided in the study appendix to ensure transparency and
reproducibility.

Model Evaluation

Model performance was evaluated by comparing Al-generated
classifications with expert-defined ground-truth labels established by
an experienced fetal neurosonography specialist. Diagnostic
performance metrics included overall accuracy, sensitivity (recall),
specificity, precision (positive predictive value), negative predictive
value, Fl-score, receiver operating characteristic area under the
curve (ROC-AUC), and confusion matrix analysis.

The final dataset consisted of 645 images, including 529 real clinical
ultrasound images (413 normal, 116 abnormal) and 116 synthetically
generated abnormal images. The dataset was partitioned using an
85% [/ 15% train—test split. Accordingly, the training set comprised 548
images (347 normal and 201 abnormal, including synthetic cases),
while the held-out test set included 97 images (66 normal and 31
abnormal).



Within the held-out test set, all normal images were real clinical
ultrasound images, whereas the abnormal class consisted of both real
abnormal cases (n = 18) and synthetic abnormal cases (n = 13),
reflecting the class-imbalance mitigation strategy applied during
model development. Synthetic images were included in this mixed
evaluation solely as part of the predefined data split.

To ensure fair and clinically responsible evaluation under class
imbalance, a dynamic probability decision-threshold optimization
strategy was employed at inference time instead of a fixed 0.5
classification threshold. The optimal decision threshold was selected
via a threshold scan to maximize balanced diagnostic performance
while reducing bias against the underrepresented abnormal class.

All misclassified cases, including false-positive and false-negative
predictions, were subsequently reviewed qualitatively by domain
experts to identify contributing factors such as borderline lateral
ventricular measurements, suboptimal acoustic windows, reduced
image resolution, or intrinsic anatomical variability.

The primary outcome of the study was the diagnostic accuracy of the
Al-assisted model in classifying lateral ventricular findings in fetal
brain ultrasound images as normal or abnormal, using expert-
established ground-truth labels. This evaluation served as an anatomy-
focused, proof-of-concept initial model for potential future expansion
to a comprehensive multiplanar fetal neurosonography framework.

Secondary outcomes included assessment of the model’s sensitivity
and specificity for detecting lateral ventricular abnormalities, its
potential to reduce inter-observer variability by providing
standardized Al-assisted interpretation, identification of error patterns
and image characteristics associated with misclassification, and
evaluation of the model’s generalizability across heterogeneous, real-
world variations in ultrasound image quality.



Results

Approximately 10,000 prenatal ultrasound images were initially
screened for model development. Of these, approximately 3,000
images corresponded to fetal brain intracranial structures. Following
predefined inclusion criteria, 773 lateral ventricular images were
identified. Among these, 529 images (413 normal and 116 abnormal)
were selected through expert review as high-confidence ground-truth
cases for model development.

To address the pronounced class imbalance inherent in lateral
ventricular abnormality detection, 116 synthetic abnormal images
were generated and incorporated exclusively into the training dataset.
No synthetic images were used during validation or real-only testing.
This resulted in a final dataset of 645 images, comprising 529 real
clinical images and 116 synthetic abnormal images. All images
represented routine  mid-gestation fetal neurosonographic
examinations performed between 18 and 24 weeks of gestation.

The dataset was partitioned using an 85% / 15% train—test split. The
training set contained 548 images (347 normal and 201 abnormal,
including synthetic anomalies), while the held-out test set comprised
97 images (66 normal and 31 abnormal). Within the held-out test set,
all normal images were real clinical cases, whereas the abnormal class
included both real abnormal cases (n = 18) and synthetic abnormal
cases (n = 13), reflecting the imbalance-mitigation strategy applied
during model development.

Evaluation Frameworks and Confusion Matrices

Two independent evaluation scenarios were conducted to assess
model performance:



Mixed Test Evaluation (Real + Synthetic; n = 97)

This evaluation was derived from the primary 85/15 split of the total
augmented dataset (N = 645).

« Distribution: 66 normal and 31 abnormal cases (18 real + 13
synthetic).

. Performance: Using dynamic probability-threshold optimization,
the model achieved an overall accuracy of 97.94%, correctly
classifying 65 of 66 normal cases and 30 of 31 abnormal cases.
The resulting confusion matrix was [[65, 1], [1, 30]],

corresponding to one false-positive and one false-negative
prediction.

« ROC-AUC: 0.9976, indicating excellent discriminatory
performance.
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Real-Only Test Evaluation (Unseen Real Images; n = 80)

To assess real-world generalizability, a secondary evaluation was
performed using exclusively real clinical images that were never
included in training. This real-only test set consisted of 62 normal and

18 abnormal images, representing approximately 15% of the original
real dataset (80/529).

. Performance: Under dynamic threshold optimization, the model
achieved an accuracy of 98.75%, sensitivity of 100%, specificity
of 98.4%, F1-score of 0.973, and ROC-AUC of 0.9955.

. Confusion matrix: [[61, 1], [0, 18]], with only one false-positive
case and no false-negative predictions, indicating complete
detection of abnormal lateral ventricular cases in the real-only
evaluation.
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Statistical Rationale

The variation in the number of normal cases between the mixed test
set (66 cases) and the real-only test set (62 cases) reflects independent
random shuffling and differing denominators. In the mixed evaluation,
the 15% split was applied to the total augmented dataset (645 x 0.15
= 97), whereas in the real-only evaluation it was applied solely to the
real clinical subset (529 x 0.15 = 80). This dual-validation strategy
confirms that the use of synthetic data during training enhanced
feature learning without introducing bias into the clinical evaluation
phase.

Data Leakage Verification and Error Analysis

To ensure strict separation between training and evaluation datasets,
a file-level overlap analysis was performed following dataset
partitioning. All filenames associated with real training images and real
test images were programmatically compared, confirming zero overlap
and excluding any possibility of data leakage. Synthetic images were
restricted exclusively to the training set and were never included in
validation or real-only testing.

Qualitative expert review of the single misclassified real-image case
revealed borderline lateral ventricular measurements and mild image
degradation related to suboptimal acoustic windows, highlighting
known challenges in fetal neurosonographic interpretation.

Discussion

This study demonstrates that an Al-assisted diagnostic model
developed exclusively using archived 2D fetal brain ultrasound
images from the lateral ventricular plane can achieve very high
diagnostic performance in detecting lateral ventricular abnormalities.
In real-only clinical evaluation, the model correctly classified 98.4% of
normal cases and 100% of abnormal cases, yielding an overall



diagnostic accuracy of 98.75%. Despite relying on a single imaging
plane, these results indicate that targeted, anatomy-focused deep-
learning approaches can provide substantial diagnostic value even at
early stages of fetal neurosonographic assessment.

Recent literature has shown that artificial intelligence applications in
obstetric imaging can reduce observer variability, improve diagnostic
consistency, and limit operator dependence (14). Al-based tools
applied to complex anatomical regions, including the fetal brain, have
demonstrated potential to support more standardized assessment and
interpretation (15,16). The high diagnostic accuracy achieved in this
study using a carefully curated lateral ventricular dataset is consistent
with these findings and further supports the clinical relevance of
focused Al-assisted screening tools.

Several prior studies investigating Al applications in fetal brain imaging
provide important context. For example, Xie et al. reported diagnostic
accuracies exceeding 96% for normal—abnormal classification using
axial fetal brain ultrasound images (7), while Drukker et al. highlighted
the substantial operator dependency inherent in routine ultrasound
workflows and the potential role of Al-based standardization tools (2).
Together, these studies support the targeted lateral ventricular
classification strategy employed in the present work and suggest that
even a single-plane, anatomy-focused approach may offer meaningful
clinical decision support.

From a methodological standpoint, Al models developed for fetal
imaging often involve segmentation, identification of key anatomical
structures, and anomaly classification (14,16). The architecture
adopted in this study aligns with this framework and provides a
scalable foundation for future expansion to include additional planes
such as the posterior fossa, midline structures, and cortical
development. The systematic expert review of misclassified cases
further reflects best practices for iterative model refinement and
clinical translation.



The strengths of this study include the use of a real-world, archived
clinical dataset, rigorous expert-based annotation, and evaluation
strategies alighed with routine clinical practice. The exclusive use of
synthetic images during training effectively addressed class imbalance
without inflating test performance or introducing evaluation bias,
consistent with emerging best practices in medical Al development.

Several limitations should be acknowledged. The model was trained
exclusively on lateral ventricular planes and therefore does not
represent a comprehensive fetal neurosonographic assessment. The
relatively limited number of abnormal cases may influence the
precision of certain performance metrics, and the single-center design
warrants external validation across different ultrasound systems,
operators, and patient populations.

In conclusion, this study provides strong evidence for the feasibility of
Al-assisted detection of lateral ventricular abnormalities in 2D fetal
brain ultrasound as a standardized, anatomy-focused screening
approach. Future work incorporating multiplanar imaging,
classification of specific ventricular anomaly subtypes, and prospective
clinical validation will be essential to further strengthen the clinical
applicability of this approach.
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